Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(2): R55-R58, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262358

RESUMO

The microbial eukaryotes known as protists are of immense importance for our understanding of eukaryotic biology. Although it is often difficult to convince funding bodies to sponsor research projects aimed at finding new protist lineages, such discoveries usually provide new and fundamental insights into cell and evolutionary biology, and ecology.


Assuntos
Evolução Biológica , Ecologia
2.
Curr Protoc ; 4(1): e969, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38265166

RESUMO

PhyloFisher is a software package written primarily in Python3 that can be used for the creation, analysis, and visualization of phylogenomic datasets that consist of protein sequences from eukaryotic organisms. Unlike many existing phylogenomic pipelines, PhyloFisher comes with a manually curated database of 240 protein-coding genes, a subset of a previous phylogenetic dataset sampled from 304 eukaryotic taxa. The software package can also utilize a user-created database of eukaryotic proteins, which may be more appropriate for shallow evolutionary questions. PhyloFisher is also equipped with a set of utilities to aid in running routine analyses, such as the prediction of alternative genetic codes, removal of genes and/or taxa based on occupancy/completeness of the dataset, testing for amino acid compositional heterogeneity among sequences, removal of heterotachious and/or fast-evolving sites, removal of fast-evolving taxa, supermatrix creation from randomly resampled genes, and supermatrix creation from nucleotide sequences. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Constructing a phylogenomic dataset Basic Protocol 2: Performing phylogenomic analyses Support Protocol 1: Installing PhyloFisher Support Protocol 2: Creating a custom phylogenomic database.


Assuntos
Aminoácidos , Evolução Biológica , Filogenia , Sequência de Aminoácidos , Cultura
3.
Mol Phylogenet Evol ; 191: 107991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092322

RESUMO

Anaerobes have emerged in several major lineages of ciliates, but the number of independent transitions to anaerobiosis among ciliates is unknown. The APM clade (Armophorea, Muranotrichea, Parablepharismea) represents the largest clade of obligate anaerobes among ciliates and contains free-living marine and freshwater representatives as well as gut endobionts of animals. The evolution of APM group has only recently started getting attention, and our knowledge on its phylogeny and genetics is still limited to a fraction of taxa. While ciliates portray a wide array of alternatives to the standard genetic code across numerous classes, the APM ciliates were considered to be the largest group using exclusively standard nuclear genetic code. In this study, we present a pan-ciliate phylogenomic analysis with emphasis on the APM clade, bringing the first phylogenomic analysis of the family Tropidoatractidae (Armophorea) and confirming the position of Armophorida within Armophorea. We include five newly sequenced single cell transcriptomes from marine, freshwater, and endobiotic APM ciliates - Palmarella salina, Anteclevelandella constricta, Nyctotherus sp., Caenomorpha medusula, and Thigmothrix strigosa. We report the first discovery of an alternative nuclear genetic code among APM ciliates, used by Palmarella salina (Tropidoatractidae, Armophorea), but not by its close relative, Tropidoatractus sp., and provide a comparative analysis of stop codon identity and frequency indicating the precedency to the UAG codon loss/reassignment over the UAA codon reassignment in the specific ancestor of Palmarella. Comparative genomic and proteomic studies of this group may help explain the constraints that underlie UAR stop-to-sense reassignment, the most frequent type of alternative nuclear genetic code, not only in ciliates, but eukaryotes in general.


Assuntos
Cilióforos , Proteômica , Animais , Filogenia , Código Genético , Cilióforos/genética , Códon de Terminação , Perfilação da Expressão Gênica
4.
Trends Microbiol ; 32(2): 128-131, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102035

RESUMO

Protists are key players in the biosphere. Here, we provide a perspective on integrating protist culturing with omics approaches, imaging, and high-throughput single-cell manipulation strategies, concluding with actions required for a successful return of the golden age of protist culturing.


Assuntos
Eucariotos , Eucariotos/genética , Multiômica
5.
Curr Biol ; 33(19): 4269-4275.e3, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729914

RESUMO

Within flatworms, the vast majority of parasitism is innate to Neodermata, the most derived and diversified group of the phylum Platyhelminthes.1,2 The four major lineages of Neodermata maintain various combinations of life strategies.3 They include both externally (ecto-) and internally feeding (endo-) parasites. Some lineages complete their life cycles directly by infecting a single host, whereas others succeed only through serial infections of multiple hosts of various vertebrate and invertebrate groups. Food sources and modes of digestion add further combinatorial layers to the often incompletely understood mosaic of neodermatan life histories. Their evolutionary trajectories have remained molecularly unresolved because of conflicting evolutionary inferences and a lack of genomic data.4 Here, we generated transcriptomes for nine early branching neodermatan representatives and performed detailed phylogenomic analyses to address these critical gaps. Polyopisthocotylea, mostly hematophagous ectoparasites, form a group with the mostly hematophagous but endoparasitic trematodes (Trematoda), rather than sharing a common ancestor with Monopisthocotylea, ectoparasitic epithelial feeders. Phylogenetic placement of the highly specialized endoparasitic Cestoda alters depending on the model. Regardless of this uncertainty, this study brings an unconventional perspective on the evolution of platyhelminth parasitism, rejecting a common origin for the endoparasitic lifestyle intrinsic to cestodes and trematodes. Instead, our data indicate that complex life cycles and invasion of vertebrates' gut lumen, the hallmark features of these parasites, evolved independently within Neodermata. We propose the demise of the traditionally recognized class Monogenea and the promotion of its two subclasses to the class level as Monopisthocotyla new class and Polyopisthocotyla new class.

6.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282792

RESUMO

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Assuntos
Isópteros , Parabasalídeos , Animais , Filogenia , América do Sul
7.
Microbiome ; 11(1): 134, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322519

RESUMO

BACKGROUND: Marine heterotrophic flagellates (HF) are dominant bacterivores in the ocean, where they represent the trophic link between bacteria and higher trophic levels and participate in the recycling of inorganic nutrients for regenerated primary production. Studying their activity and function in the ecosystem is challenging since most of the HFs in the ocean are still uncultured. In the present work, we investigated gene expression of natural HF communities during bacterivory in four unamended seawater incubations. RESULTS: The most abundant species growing in our incubations belonged to the taxonomic groups MAST-4, MAST-7, Chrysophyceae, and Telonemia. Gene expression dynamics were similar between incubations and could be divided into three states based on microbial counts, each state displaying distinct expression patterns. The analysis of samples where HF growth was highest revealed some highly expressed genes that could be related to bacterivory. Using available genomic and transcriptomic references, we identified 25 species growing in our incubations and used those to compare the expression levels of these specific genes. Video Abstract CONCLUSIONS: Our results indicate that several peptidases, together with some glycoside hydrolases and glycosyltransferases, are more expressed in phagotrophic than in phototrophic species, and thus could be used to infer the process of bacterivory in natural assemblages.


Assuntos
Ecossistema , Eucariotos , Eucariotos/genética , Água do Mar/microbiologia , Expressão Gênica
8.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610734

RESUMO

Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.


Assuntos
Plastídeos , Proteoma , Animais , Proteoma/genética , Plastídeos/genética , Filogenia , Fotossíntese/genética , Redes e Vias Metabólicas
10.
Curr Biol ; 31(24): 5605-5612.e5, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34710348

RESUMO

Discoveries of diverse microbial eukaryotes and their inclusion in comprehensive phylogenomic analyses have crucially re-shaped the eukaryotic tree of life in the 21st century.1 At the deepest level, eukaryotic diversity comprises 9-10 "supergroups." One of these supergroups, the Metamonada, is particularly important to our understanding of the evolutionary dynamics of eukaryotic cells, including the remodeling of mitochondrial function. All metamonads thrive in low-oxygen environments and lack classical aerobic mitochondria, instead possessing mitochondrion-related organelles (MROs) with metabolisms that are adapted to low-oxygen conditions. These MROs lack an organellar genome, do not participate in the Krebs cycle and oxidative phosphorylation,2 and often synthesize ATP by substrate-level phosphorylation coupled to hydrogen production.3,4 The events that occurred during the transition from an oxygen-respiring mitochondrion to a functionally streamlined MRO early in metamonad evolution remain largely unknown. Here, we report transcriptomes of two recently described, enigmatic, anaerobic protists from the genus Anaeramoeba.5 Using phylogenomic analysis, we show that these species represent a divergent, phylum-level lineage in the tree of metamonads, emerging as a sister group of the Parabasalia and reordering the deep branching order of the metamonad tree. Metabolic reconstructions of the Anaeramoeba MROs reveal many "classical" mitochondrial features previously not seen in metamonads, including a disulfide relay import system, propionate production, and amino acid metabolism. Our findings suggest that the cenancestor of Metamonada likely had MROs with more classical mitochondrial features than previously anticipated and demonstrate how discoveries of novel lineages of high taxonomic rank continue to transform our understanding of early eukaryote evolution.


Assuntos
Eucariotos , Organelas , Anaerobiose , Eucariotos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/genética , Organelas/metabolismo , Oxigênio/metabolismo , Filogenia
11.
Nat Commun ; 12(1): 6003, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650064

RESUMO

Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


Assuntos
Evolução Biológica , Eucariotos/genética , Genoma , Genômica , Animais , DNA/metabolismo , Células Eucarióticas/metabolismo , Microbiologia , Parasitos/genética , Proteínas/genética , Proteínas/metabolismo
12.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358228

RESUMO

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Assuntos
Eucariotos/genética , Filogenia , Software
13.
Sci Rep ; 11(1): 7270, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790354

RESUMO

Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.


Assuntos
Isópteros , Parabasalídeos , Simbiose , Animais , Parabasalídeos/classificação , Parabasalídeos/fisiologia
14.
BMC Biol ; 19(1): 77, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863338

RESUMO

BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria. RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines. CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.


Assuntos
Apicomplexa , Mitocôndrias , Animais , Apicomplexa/genética , Humanos , Mitocôndrias/genética , Filogenia , Análise de Célula Única , Transcriptoma
15.
Database (Oxford) ; 20202020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33216898

RESUMO

The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists-a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.


Assuntos
Archaea , Eucariotos , Bactérias/genética , Eucariotos/genética , Genes de RNAr , Filogenia
16.
Front Cell Infect Microbiol ; 10: 544335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123491

RESUMO

Blastocystis sp. is a common intestinal protist colonizing the human intestine the prevalence of which varies across non-industrialized and industrialized countries. Its role in the human gut ecosystem remains unclear due to persisting gaps in knowledge of epidemiology and factors affecting gut colonization. Here, we aimed to expand the knowledge of the epidemiology of Blastocystis sp. in the gut-healthy humans in one of the industrialized European countries, including the distribution of its subtypes, the correlation between its occurrence and several factors such as lifestyle, contact with animals, age, and sex. A total of 288 stool samples were obtained from asymptomatic individuals over the entire age-range and 136 samples from animals with which the volunteers were in frequent contact. All samples were examined in parallel by PCR and xenic in vitro culture. Blastocystis sp. was detected in samples from both human and non-human hosts. In humans, the overall prevalence was 24% and eight subtypes were found; in animals, the prevalence was 10%, and only five subtypes were detected. A higher incidence of Blastocystis sp. was observed in individuals (i) traveling outside Europe, (ii) in frequent contact with livestock, and (iii) over 50 years of age. We found no effect on gender on Blastocystis sp. colonization. Summary: This study provides data on the prevalence and diversity of the gut protist Blastocystis sp. and its subtypes in a gut-healthy human population with emphasis on several factors such as contact with animals, lifestyle, age, and gender.


Assuntos
Infecções por Blastocystis , Blastocystis , Animais , Blastocystis/genética , Infecções por Blastocystis/epidemiologia , República Tcheca/epidemiologia , Ecossistema , Europa (Continente) , Fezes , Humanos , Prevalência
18.
Genome Biol Evol ; 12(8): 1258-1276, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467979

RESUMO

Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.


Assuntos
Interações Hospedeiro-Parasita/genética , Myxozoa/genética , Oncorhynchus mykiss/parasitologia , Fatores de Virulência/genética , Animais , Contaminação por DNA , Genótipo , Myxozoa/patogenicidade , Filogenia , Polimorfismo de Nucleotídeo Único , Transcriptoma
19.
Curr Biol ; 30(11): 2037-2050.e6, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330419

RESUMO

Oxygen plays a crucial role in energetic metabolism of most eukaryotes. Yet adaptations to low-oxygen concentrations leading to anaerobiosis have independently arisen in many eukaryotic lineages, resulting in a broad spectrum of reduced and modified mitochondrion-related organelles (MROs). In this study, we present the discovery of two new class-level lineages of free-living marine anaerobic ciliates, Muranotrichea, cl. nov. and Parablepharismea, cl. nov., that, together with the class Armophorea, form a major clade of obligate anaerobes (APM ciliates) within the Spirotrichea, Armophorea, and Litostomatea (SAL) group. To deepen our understanding of the evolution of anaerobiosis in ciliates, we predicted the mitochondrial metabolism of cultured representatives from all three classes in the APM clade by using transcriptomic and metagenomic data and performed phylogenomic analyses to assess their evolutionary relationships. The predicted mitochondrial metabolism of representatives from the APM ciliates reveals functional adaptations of metabolic pathways that were present in their last common ancestor and likely led to the successful colonization and diversification of the group in various anoxic environments. Furthermore, we discuss the possible relationship of Parablepharismea to the uncultured deep-sea class Cariacotrichea on the basis of single-gene analyses. Like most anaerobic ciliates, all studied species of the APM clade host symbionts, which we propose to be a significant accelerating factor in the transitions to an obligately anaerobic lifestyle. Our results provide an insight into the evolutionary mechanisms of early transitions to anaerobiosis and shed light on fine-scale adaptations in MROs over a relatively short evolutionary time frame.


Assuntos
Anaerobiose/genética , Anaerobiose/fisiologia , Evolução Biológica , Cilióforos/genética , Cilióforos/fisiologia , Genômica , Cilióforos/ultraestrutura , Mitocôndrias/fisiologia
20.
Proc Natl Acad Sci U S A ; 116(39): 19675-19684, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31492817

RESUMO

Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.


Assuntos
Isópteros/microbiologia , Oximonadídeos/metabolismo , Animais , Bactérias/metabolismo , Bacteroidetes/genética , Celulose/metabolismo , Sistema Digestório/metabolismo , Eucariotos/metabolismo , Genoma , Isópteros/genética , Metagenômica/métodos , Filogenia , Análise de Célula Única/métodos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...